Page Contents
Định lý Ptoleme là gì?
Định lý Ptôlêmê về mối liên hệ giữa độ dài các cạnh trong một tứ giác nội tiếp.
Định lý Ptoleme hay đẳng thức Ptoleme là một đẳng thức trong hình học Euclid miêu tả quan hệ giữa độ dài bốn cạnh và hai đường chéo của một tứ giác nội tiếp. Định lý này mang tên nhà toán học và thiên văn học người Hy Lạp cổ đại Ptolemy (tức Claudius Ptolemaeus).
Nếu A, B, C, và D là 4 đỉnh của tứ giác nội tiếp đường tròn thì:
với dấu gạch ngang ký hiệu độ dài của các cạnh.
Định lý này cũng có thể phát biểu thành định lý thuận và đảo:
- THUẬN:NẾU MỘT TỨ GIÁC NỘI TIẾP TRONG MỘT ĐƯỜNG TRÒN THÌ TÍCH CỦA HAI ĐƯỜNG CHÉO BẰNG TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN
- ĐẢO:NẾU MỘT TỨ GIÁC THỎA MÃN ĐIỀU KIỆN TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN BẰNG TÍCH CỦA HAI ĐƯỜNG CHÉO THÌ TỨ GIÁC ĐÓ NỘI TIẾP MỘT ĐƯỜNG TRÒN.
với dấu gạch ngang ký hiệu độ dài của các cạnh.
Định lý này cũng có thể phát biểu thành định lý thuận và đảo:
- THUẬN:NẾU MỘT TỨ GIÁC NỘI TIẾP TRONG MỘT ĐƯỜNG TRÒN THÌ TÍCH CỦA HAI ĐƯỜNG CHÉO BẰNG TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN
- ĐẢO:NẾU MỘT TỨ GIÁC THỎA MÃN ĐIỀU KIỆN TỔNG CÁC TÍCH CỦA CÁC CẶP CẠNH ĐỐI DIỆN BẰNG TÍCH CỦA HAI ĐƯỜNG CHÉO THÌ TỨ GIÁC ĐÓ NỘI TIẾP MỘT ĐƯỜNG TRÒN.
Chứng minh Định lý Ptoleme
- Gọi ABCD là tứ giác nội tiếp đường tròn.
- Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
- Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
- Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
- Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD đồng dạng với △KBC.
- Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
- Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
- Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
- Hay: (AK+CK)·BD = AB·CD + BC·DA;
- Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
Bất đẳng thức Ptoleme
Bất đẳng thức Ptoleme là trường hợp tổng quát của định lý Ptoleme đối với một tứ giác bất kỳ. Nếu AB CD là tứ giác bất kỳ thì
-
��¯⋅��¯+��¯⋅��¯≥��¯⋅��¯
Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptolemye.
Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.
Dựng điểm � sao cho △��� đồng dạng với △���. Khi đó, theo tính chất của tam giác đồng dạng, ta có
- ����=����
Suy ra
- ��.��=��.��(1)
Mặt khác, △��� và △��� cũng đồng dạng do có
- ����=���� VÀ ���^=���^
Từ đó
- ����=����
Suy ra
- ��.��=��.��(2)
Cộng (1) và (2) ta suy ra
- ��⋅��+��⋅��=��⋅(��+��)
Áp dụng bất đẳng thức tam giác ta suy ra ��⋅��+��⋅��≥��⋅��
Nguồn: chứng minh định lý ptoleme